Time-to-close: an analysis of GitHub
Issue/Pull Request Templates

Yogeshvar Senthilkumar
The University of Adelaide
Adelaide, Australia
yogeshvar.senthilkumar@student.adelaide.edu.au

ABSTRACT

This research paper explores the usage and characteristics of GitHub
templates in open-source projects. We examined a dataset of 538
repositories with both Issue and Pull Request templates using the
GitHub API. We discovered some valuable insights for effective
communication among the community. On average, repositories
had ~ 2.68 and 1 issue and pull request templates respectively.
Contents of Templates contained labels such as welcoming contrib-
utors, project guidelines, and additional data. We also investigated
variations and differences in templates across different languages.
Javascript and Go repositories exhibited distinct trends, whereas
Assembly language despite fewer repositories, had the highest av-
erage number of issue templates. This research analysis gives us an
understanding of templates for better effective communication. Fu-
ture directions include evaluating the impact of templates, template
customization, and understanding the coherence between template
usage and community engagement.

1 INTRODUCTION

Over the years, GitHub’s issue and pull request templates have
gained widespread adoption among software projects, and act as a
provider to standardize information from contributors [10] In this
work, to achieve a better understanding of the template feature in
GitHub, we conduct a mixed-methods empirical study of issue/PR
templates, by answering the following questions: RQ1: What are
the common types of GitHub issue and pull request templates used in
the OSS Projects? RQ2: What are the contents/taxonomy of these tem-
plates? RQ3: How do the contents of GitHub templates differ across
programming languages? The insights obtained from this study can
inform the best practices and provide guidelines for the community
to understand the template feature, and leverage the potential of
GitHub’s template feature to streamline workflows, better issue
resolution, and perform effective collaboration among the contribu-
tors [14] [15]. This understanding will ultimately contribute to the
development of more efficient and productive open-source software
projects [16].

2 MOTIVATION

Github, a widely used platform for hosting, version controlling,
and collaborating on Open source software projects (OSS) plays a
crucial role in facilitating the distributed and collaborative agile
environment for building software solutions [10]. Acts as a central
hub where programmers and project managers, stakeholders can
engage, propose, discuss, report through issues and pull requests [2].
The global nature of OSS development often means that developers
are geographically dispersed, making effective communication for
successful collaboration on GitHub [19]. Within this constraint,

everyone in the community majorly relies on GitHub’s features
to interact and build things together [14]. Although, the descrip-
tion of issues and pull request contributions can be challenging
[2]. Various issues and pull requests are stagnated because of the
inadequate description, furthermore, the communication between
the user and maintainer for requesting more information makes the
issue disappear or less important over time [3]. GitHub analyzed
the shortcomings of the informational quality of issues and pull re-
quests, and introduced the Issue/Pull Request Templates, which will
ensure to maintainers have a proper informational quality as they
can customize the template. [12] The template will be prompted
to the contributors who are expected to include the customized
information requested by the maintainers. Although, this feature
has been widely used by various popular and trending projects
on GitHub. An analysis of templates showcases the potential for
improving collaboration in the OSS community.

3 BACKGROUND

In the majority of GitHub projects, both issue discussion and code
changes proposal/discussions are conducted primarily through text-
based communication. [9] For an issue discussion, the users who
encountered an issue will report the issue in the form of an issue
in GitHub under the repository. An issue will be composed of an
issue description and unexpected behavior of the software. While
a pull request would be a code change proposal by a developer
which could potentially be solving an issue or introduce a new
feature to the software. Both the crucial part of better software is
initiated communication, the maintainers and the users will move
on back-and-forth to collaboratively improve the software. [19] But
the description of an issue and pull request submission is difficult.
Without a proper description, the maintainers cannot understand
the unexpected behavior reported by a user. Similarly, if a code
changes proposal does not have a detailed description. It would be
a tedious task for the maintainer to review/understand the code
without a proper description of the proposal. The analysis of these
templates can offer insights that can be useful in future projects for
streamlining effective communication practices.

4 METHODOLOGY

4.1 Research Questions

RQ1: What are the common types of GitHub issue and pull request
templates used in the OSS Projects? We have created our dataset
using GitHub API to obtain 538 repositories which contain both
Pull Request Templates and Issue templates. We first analyzed the av-
erage number of issue templates was around 2.6877 whereas for pull
request templates it was ~ 1. Furthermore, we have noticed 82.1% of

repositories have more than one issue file template and only 3.71%
for pull request templates. RQ2: What are the contents/taxonomy
of these templates? With the repository data, we qualitatively clas-
sify the contents of the template files, significantly exploring the
elements of templates among various projects. We concluded that
templates have a common structure such as greeting contributions,
and demonstration of project guidelines, descriptive informational
questions to collect meaningful data. RQ3: How do the contents of
GitHub templates differ across programming languages? We have a
total of 25 unique languages from the 436 repositories, a noticeable
difference between the Javascript and Go languages repositories
have an average number of issue templates as 2.52 and 3.18 respec-
tively. On the other hand, Assembly languages has only 2 reposito-
ries but the average number of issue file templates is 4, greater than
any other 25 unique languages in the dataset. We will also explore
valuable insights into in-differences between templates based on
the primary language.

4.2 Data Collection

For this empirical study, we have collected the necessary data by
combining several steps. Firstly, we explored different open-source
software that enables us to collect or visualize data. Noticeably,
we have tried MergeStat and it was promising. Although, a deeper
understanding of a single repository was the major objective of the
software. So we decided to go for a holistic approach as it is evident
GitHub provides Application Programming Interface to interact with
GitHub. For communicating with GitHub, we need to obtain a
GitHub token that will grant access to read, and write repository
information, commits, and pull requests. With many versions of
API available, we utilized GraphQL endpoint to retrieve the required
data. One of the key elements in choosing this version over the
classic REST API endpoint, was the exposure to the templates on
GraphQL. Under the nodes of GraphQL, we have issueTemplates and
pullRequest Templates which would be handy for our research [7].

{
search (query: "QUERY",

type: REPOSITORY,
first: 100) {
pagelnfo {
hasNextPage
endCursor
}
nodes {
on Repository {
nameWithOwner
stargazerCount
primaryLanguage {
name
}
issueTemplates {
filename
body
name
title

}
owner {
login
}
pullRequestTemplates {
filename
body
}
hasWikiEnabled
description

}
Listing 1: Query to retrieve repository information

With the help of the query mentioned above, we accumulate the
repositories with a significant number of stars (greater than 1000)
and also in the popular languages such as Python, Java, Javascript,
C++, C, Go, Ruby, PHP, Rust, Swift and Typescript. From the response,
we utilise the hasNextPage and endCursor parameters to iterate
through the paginated results. For each repository, we consider only
if the issue templates and pull request templates are present in the
repository. The accumulated data will be converted into a Commo
Seperated Values to store the specific repository information.

On the pull request template files and issue template files [6] from
API was given as a list, so to facilitate analysis we convert it to
multiple file names separated by commas. The resulting dataset
comprised 538 repositories, a total of 6574 individual issue files
and 2601 pull request templates.

To ensure the reproducibility of the research results, the python
script used for data creation is publicly available for anyone to
reproduce on GitHub (https://github.com/yogeshvar/GH-Templates.
Detailed technical documentation is provided to reproduce the data
collection process for this research project, this enables verification
of the findings and promotes transparency in research methodology.

e Obtain a Github Token: For communication with Github’s
Application programming interface, we would require a
Github token which should grant read access to repositories,
commits, files, and pull requests.

e GraphQL Endpoint: With the Github Token, we can make
API calls to the GraphQL endpoint to retrieve the data. Spec-
ify the desired filters, such as specific programming lan-
guages, in descending or ascending order based on created
date.

o Fetch & Process Data: The retrieved repositories in batches
are accumulated into a single entity. Store the collected data
in a suitable format, such as TSV or CSV files.

By following the given steps, researchers can reproduce the data
collection process and obtain a dataset similar to this research,
which could be essential for replacing the results and facilitating
further analysis.

4.3 Data Analysis

4.3.1 What are the common types of GitHub issue and pull
request templates used in the OSS Projects? For answering

https://github.com/yogeshvar/GH-Templates
https://api.github.com/graphql

the RQ1, we conducted an analysis of the data we collected. Our
major objective was to focus on several key aspects such as the
identification of the most common issue and pull request templates,
the percentage of issue and pull request templates in the reposi-
tory, and the average number of sections in the commonly used

Top 5 Issue Templates Top 5 PR Templates

templates.
Top 3 Issue template Top 3 Pull Request Template
pull_request_template | 90.31% bug_report 22.18%
bugfix 1.11% feature_report 20.61%
translation_checklist | 0.58% question 4.02%
Table 1: Top 3 issue & pull request template

We investigate the average number of issue templates and pull
request templates, and we concluded the bug_report.md and pull
_request_template.md are the most commonly used issue and pull
request templates. Additionally to understand the popular common
templates, our results showcase every repository that adopts the
templates has two generic templates. One for the issue_template

and other for the pull request_template. We identify the repository
code owners use bug_report.md as the common template which
takes us 3 sections on average collecting relative information about

the issue or the issue experienced by the user.

plate

Most Common Sections Most Common Sections
in Issue Templates in PR Templates
Expected Behaviour | 71.97% Description 22.85%
Steps to Reproduce | 59.83% Checklist 22.27%
Environment 55.23% Summary 4.37%
Table 2: Most 3 common sections in the commonly used tem-

1400 -
1200 - 2000 -
& "
= 1000 - -4
2 & 1500 -
%5 800- 2
[[
w Qo
2 600- £ 1000 -
E S
3 =
£ 400-
500 -
200 - I
SRR o N S
= 5 £ o o z X . 3
s ¢ £ 5 3 FE £ 5 F
s & § by o 5 F
2 g b s & &
& g 3 7 & £
o 2 & v
Issue Template = 3 K]
5 5
PR Template
Figure 1: Top 5 issue/pull request templates

of the templates for streamlining issue and pull request manage-
ment and also improve the performance of project communication

and efficiency.
4.3.2 What are the contents/taxonomy of these templates?
In analyzing the contents of these templates, we need to understand
the semantic meaning and context of the template on a sentence
level to have an accurate and flexible classification. Unlike the
traditional approaches such as pattern matching or regex matching
can capture the variations on the template structures, but it would
not a suitable methodology for the diverse and evolving nature of
the GitHub Templates. Previous works on [9] did an open coding
approach, taking a random sample of template files got classification.
For this research, we have utilized all the repositories rather than
sampling the template files. Then, all the categories are classified
based on [9] but ignore a few taxonomies as we are focusing on the
widely used templates. Although, we have come to a conclusion to

To have more insights into the sections of the template in the
common templates, we adopted a classic natural language pro-
cessing to understand the percentage of each section across the
commonly used templates. Notably, sub-sections such as "Curren-
t/Expected Behaviour", "Steps to reproduce” and "Environment”
were highly present and indicating the frequent usages in the widely
used templates. On the contrary, sections such as "Description”,
"Checklist" and "Summary" take us a huge percentage in the pull
request templates. These findings on the common templates present
in the widely used templates give us insights into incorporating
these templates and common sections for future contributions to

OSS projects.

Overall, our data analysis for RQ1 identifies the top templates,
percentage of common templates, average number of sections, and
also the prevalent sections of the both issue and pull request tem-
plates, which can be served as a guideline for the developers and
other stakeholders to provide a comprehensive and structured com-

munication for the OSS projects. To conclude, the bug report tem-
plate consisted of 3.74 sections on average while the pull request
template has an average of 2.55. By answering our first research
question, we can understand the necessary sections and importance

adopt the higher-level categories from [9].

For understanding the semantic and contextual meaning of

the templates, we approach a transformer-based language model

trained on a large corpus of text data. Facebook/bart-large-mnli
[8] model, a state-of-the-art-transformer fine-tuned on the Multi-
Genre Natural Language Inference (MNLI) dataset, which can be
useful to comprehend the semantics between sentences and per-
form classification tasks. A notable feature of the model is Zero-
shot classification [17] which enables us to classify our templates
as the model is already trained on a set of labeled examples for
classification.
With [9] categorization, we have concluded to have the following
categories for understanding the contents of the templates.

o Related Issue: This category will be useful for tracking and
providing context and understanding to the issues related

based on the issue/pull request.
e Additional Context: This type will give more background

information and context for the contributors to understand

the problem in a deeper level.

Average

25- B PR Templates

H [ssue Templates

20 -

15 -

10 -

Log -
Severity _

Documentation and Testing -

Type -

<) w
' |
summary -
additional context -
Environment ‘h

Steps to reproduce -|

Screenshot -

Related issues -
Expected/Actual behavior -

impact Assessment - NN

Debugging Information -|

Issue/Problem Description S —

Collaboration and Review -
Greeting and Introduction -|

Submission Guidelines and Formatting Ah

Proposed Solutions and Suggestions -

Categories

Figure 2: Distribution of Categories across PR/Issue Tem-

plates

Steps of Reproduce: Highlighting the reproducibility of the
work or an issue is encouraged by the code owners to resolve
it.

Expected/Actual Behaviour: Identifies the inconsistency
and discrepancies in the repository.

Type: Type provides information and nature of the problem
such as documentation, translation, bug, bug fix, feature.
Screenshot: Visual representation of the issue or pull request
is encouraged for better understanding and debugging.
Summary: A detailed description or summary of the is-
sue/pull request can help the code owners to understand the
core idea for the changes presented.

Environment: Providing information about the system con-
figurations and environment of the application/software.
Log: Including the relevant logs and stack trace can be bene-
ficial for identifying the bugs.

Severity: Impact of the issue/pull request is specified, so the
importance of the changes is noted.

Impact Assessment: Breaking changes or updating a library
needs to be mentioned for the OSS community.
Documentation & Testing: For a complex feature or a bug
fix, a proper write-up needs to record for future reference.
Collaboration & Review: Few collaboration checklists would
be given for the contributors to maintain consistency within
the repository.

Submission Guidelines & Formatting: Each Project has
its own styling guidelines and custom liners which need to
be satisfied.

o Issue/Problem Description: While the summary gives a
detailed explanation of the changes/discrepancies, this label
will provide the issue description.

e Debugging Information: Provides the debugging informa-
tion, such as error messages and scenarios.

o Greeting & Introduction: Importance of a greeting to con-
tributors and gratitude for their contributions.

e Proposed Solution & Suggestions: Proposing potential so-
lutions and suggestions for opening a discussion with the
community.

An analysis of the templates reveals the distinct contents of
the templates, in issue_templates we tend to see "Additional Con-
text" (20.67%), "Issue/Problem Description” (19.63%), "Related Issues”
(18.58% and "Steps of Reproduce" (17.25%) as a significant part. On
the other hand, in pull_request_templates we have "Additional con-
text" (24.48%), "Documentation and Testing" (13.6%), "Summary"
(11.55%), "Issue/Problem Description" (15.16%) as significant per-
centage. However, the distribution varies, and the taxonomy gives
us insights into what templates provide to a repository. In issue
templates, the context and ability to reproduce the issue are em-
phasized while the documentation and collaboration are focused in
the pull request templates.

mmm [ssue Templates
BN PR Templates

& 0 10 20 30 40 50
(\‘5 Percentage

Figure 3: Distribution of Contents based on [9] Higher Cate-
gories

From [9], comparing the two sets of templates on higher cate-
gory levels ("Greeting and Introduction”, "Explaining Project
guidelines”, "Collecting relevant information"). It is evident
that the templates seek to collect relevant information as it is
found predominantly in both templates displaying the significance
of comprehensive information required for the maintainers. In
other categories, expressing gratitude, and introducing one to the
templates takes up approximately 20% in both templates. And fi-
nally, the "Explaining project guidelines" sums up to 27.02% and
38.41% in pull request and issue templates respectively.

Overall, we investigated and provided some valuable information
on the contents of the templates by leveraging the capabilities of
the language model to provide an accurate and flexible means of
classification of template contents, also showcasing the distribution
of different categories within the templates.

4.3.3 How do the contents of GitHub templates differ across
programming languages? For the next research question, we
incorporated the previous research questions analysis and further
investigate the repository’s language level. There were 25 unique
languages in the dataset, we have listed a few of the statistics of
the templates based on the language 3.

For simplicity, we have characterized the languages based on the
Github tags. And we have concluded to have Frontend Languages,
Backend Languages, System Languages and Other languages.
All the client-facing languages and repositories are considered to be
front-end languages such as Javascript, Typescript, Dart, CSS, HTML
and SCSS, while languages like Python, Go, Ruby, PHP, Kotlin, Java,
Rust, C#, C++, and C are categorized as backend languages. And
Assembly, Swift and OCaml is said to be Assembly, the rest of the
languages are put under the label as Other Languages.

We investigated further into the templates based on the catego-
rization, we find frontend languages have a significant percentage
for the "Issue/Problem Description”, "Additional Context" and
"Steps to Reproduce”. This establishes and gives insights that the

Figure 4: Distribution of Front end Language Templates

front-end community needs to encourage the contributor to provide
a brief explanation and reproducible steps for fixing an issue. On
the pull requests, we have the "Documentation & Testing" on the top
3 as the maintainers expect the contributors to give documentation
and record on what changes are done as part of an issue or feature
enhancement.

Back-end languages tend to prioritize content related to issue
tracking, however, the back-end languages give more importance
to the "Proposed Solutions/Suggestions" and "Expected/Actual Be-
haviour", which gives an insight that the back end developers pri-
marily focus on analysis and discussing the potential solutions and
scenarios.

Figure 5: Distribution of Backend Language Templates

Furthermore, from 5 we can see the importance of "Debugging
Information” and "Impact Assessment” compared to the front-end
languages.

Languages like Markdown, Jupyter Notebook, Shell, Clojure and
None prioritize "Debugging Information" and "Expected/Actual Be-
haviour", mostly these languages focus on the thorough debugging
information. On the other hand, System languages such as Assembly,
Swift, and OCaml share similar characteristics with back-end lan-
guages, but they tend to lean on the "Environment" as the maintain-
ers need to address environmental-specific issues. The detailed and
more visualization are available at https://github.com/yogeshvar/GH-
Templates

5 FINDINGS

In the study, we created a dataset of 538 repositories using the
GitHub API and we selected only the repositories that included both
Pull Request Templates and Issue Templates. Our analysis gave some
interesting insights into the Github templates across languages,
commonly used templates, and the contents of the templates. The
average number of issue templates and pull request templates was
~ 2.6 and 1.0. Moreover, we have found that the most commonly
used issue templates are named as bug_template.md while the pull
request template is named as pull_request_template.md. We also
found that 82.1% of repositories has more than one issue template.

In addition to quantifying the template usage, we also investi-
gated the taxonomy of the templates. Through language model
classification of the template files, we identified common sections
of the template files. With [9], we formulated the categories for clas-
sifying the template contents. Notably, templates exhibit Greeting
and Introduction”, "Explaining Project guidelines", "Collect-
ing relevant information". Additionally, we investigated the tem-
plates based on the languages which lead us to discover interesting
insights such as Javascript and Go repositories had an average of
2.52 and 3.18 issue templates respectively.

6 DISCUSSION

The findings from our analysis provide some valuable insights into
the usage and contents of the Github templates. This aligns with
the motivation of our research, as the communication is effective
with these templates. We can provide general guidelines with these
findings and streamline the development process. Although, the
findings give us valuable insights into the templates. But it does
not provide us the information on the impact of the templates on a
repository.

6.1 Limitations

o GPU Access: A language Model like Facebook/bart-large-mnli
comes with huge parameters, so running on a huge dataset
requires GPU for better results. We have utilized Cloud GPUs
from Kaggle platforms as our workaround.

7 THREATS OF VALIDITY

The following section shows the potential threats to the validity of
the research findings,

https://github.com/yogeshvar/GH-Templates
https://github.com/yogeshvar/GH-Templates

Table 3: Issue Statistics

Language Number of | Number of Average Issue Number of Average PR
Repos Issues Templates per Repo PR Templates per Repo

JavaScript 28 48 1.71 8 1.33
Python 23 51 2.22 9 2.25
Dart 1 3 3.00 1 1.0
TypeScript 16 38 2.38 7 1.75
Markdown 1 2 2.00 1 1.0
Go 21 51 243 3 1.0
C++ 14 51 3.64 2 1.0
Jupyter Notebook 2 10 5.00 2 1.0
C# 3 8 2.67 3 1.5
Assembly 1 2 2.00 1 1.0
Ruby 11 21 1.91 2 1.0
CSS 1 2 2.00 1 1.0
Shell 1 1.00 1 1.0

o Selection Bias: The studies is probably affected by selec-
tion bias as the repositories blanketed inside the evalua-
tion is primarily based on unique standards along with stars
greater than a thousand and top programming languages.
This should bring about a little pattern that won’t represent
all software program tasks on GitHub.

e Maturation: If we take a look at the GitHub templates over
a long time frame, then Maturation could be a potential
threat. The templates and practices utilized by repositories
on GitHub may also evolve or exchange, leading to exclusive
results at only points in time. Changes within the templates
over the years may confound the analysis and interpretation
of the findings. For instance, recent updates of GitHub tem-
plates have exchanged the templates with customizable form
that supports YAML language.

e History: History can be a risk to validity if some significant
changes or activities occur at some point in the observed
duration. For instance, if GitHub introduces new functions
or updates its platform’s functionalities related to the issue
and pull request templates, it can affect how repositories use
and preserve those templates. This historic context wishes
to be considered when deciphering the findings.

o External Validity: For most of the open-source projects are
maintained in GitHub, but there are noticeable OSS projects
handle their version control elsewhere than GitHub. This
raises questions about the generalizability of the findings.
The analysis carried out within the have a look at might not
seize the template utilization, styles, and traits of repositories
that do not adhere to the usual practices on GitHub. The
repository might have a different technique or mechanism
to handle their effective communication.

e Measurement Bias: There might be bias if the information
accumulated from GitHub, including issue and pull request
templates, isn’t accurately recorded or interpreted. If any
error or misinterpretation can affect the analysis and findings
of the study. For example, a mistake in the conversion of
list based issue templates to string based would change the
total number of issue templates.

8 RELATED WORK

Our research contributes to the existing body of knowledge on
GitHub templates by addressing specific research questions re-
lated to their taxonomy and the variations across programming
languages. A study conducted by [9], focused on examining the
content of templates using a traditional natural language processing
coding approach without any use of language models or classifi-
cation algorithms, but it provides a baseline for the structure and
elements of templates. Similarly, a study by [18] investigated the
consistency of the issue templates and provided some importance of
standardized formats for effective issue tracking. However, our re-
search stands out by exploring the contents of GitHub templates on
a language level, finding how templates vary across programming
languages. This novel approach adds a new pathway to explore
the language-specific patterns in the templates. By considering the
broader research landscape, there are several research conducted
on customizing templates [4], the introduction of templates [6], and
the impact of templates [9].

9 CONCLUSIONS

In conclusion, our research on GitHub templates has enabled us
to understand the usage and characteristics of OSS projects. By
analyzing a diverse dataset of 538 repositories, we have revealed
that GitHub repositories incorporate multiple issue templates for
collaboration and widely used templates across the repositories.
And the average number of templates on the repositories as well.
In terms of the taxonomy, our qualitative analysis identified com-
mon sections present in the templates. The overall higher-order
categorization "greeting contributors, providing project guidelines,
and collecting relevant data." shows some results on the sections
and labels which was focused on the project.

Furthermore, our research discovered trends specific to program-
ming languages. For instance, Backend specific languages prioritize
"Proposed Solutions/Suggestions", "Expected/Actual Behaviour" while
the front-end languages prioritize "Steps to Reproduce” and "Addi-
tional Information". As the field of open-source development evolves

every day, further research on the impact of template customiza-
tion and the effectiveness and impact of the templates will provide
deeper insights for refining best practices for Github Templates in
OSS projects.

10 FUTURE WORK

With the current progress, the upcoming work should be on Un-
derstanding the Impact of Templates. This could be an interesting
research topic as the researcher would be focused on investigat-
ing the impact of the pull request templates and how long it takes
for the pull requests to be reviewed, accepted, rejected, or merged.
From this analysis, we can get insights about template complexity,
and template customization, and proceed towards optimizing it for
effective collaboration and communication among the OSS com-
munity. Furthermore, with this research we can identify patterns
and characteristics of templates that will lead us to better turn-
around times for the pull requests, enabling the project to fix their
bugs faster as we will streamline these templates with development
workflows.

One of the recent changes to the GitHub Templates was the
introduction of YAML type forms as templates, this investigation
can be conducted to examine the extent to which projects customize
the templates as form YAML Template or the classic templates. By
studying the level of template customization, and the quality of
effective communication, we can enable the shortcomings of these
areas to improve the collaboration between project stakeholders
and developers. And, this research can give us the significance of
presenting available template customization options and encourage
the development to equip these techniques and features to facilitate
template personalization for their projects and maintain a standard
consistency of pull requests and issues documentation for better
software development.

These future work ideas are not limited to these two described
above, but the provided ones serve as a direction for the exploration
of templates on a deeper level. By investigating template usage,
impact, customization, and their integration with the software de-
velopment process, the researcher can gain valuable insights that
can be used to form best practices and guidelines for the continuous
improvement of the collaborative software development process.

REFERENCES

[1] Lingfeng Bao, Xin Xia, David Lo, and Gail C. Murphy. 2021.
A large scale study of long-time contributor prediction for
GitHub projects. IEEE Transactions on Software Engineering
47,6 (1 June 2021), 1277-1298. https://doi.org/10.1109/TSE.
2019.2918536

(2] Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016.
Understanding the Factors That Impact the Popularity of
GitHub Repositories. In 2016 IEEE International Conference
on Software Maintenance and Evolution (ICSME). 334-344.
https://doi.org/10.1109/ICSME.2016.31

[3] Silvia Breu, Rahul Premraj, Jonathan Sillito, and Thomas Zim-
mermann. 2010. Information Needs in Bug Reports: Improving
Cooperation between Developers and Users. In Proceedings

of the 2010 ACM Conference on Computer Supported Cooper-
ative Work (Savannah, Georgia, USA) (CSCW ’10). Associa-
tion for Computing Machinery, New York, NY, USA, 301-310.
https://doi.org/10.1145/1718918.1718973

[4] John L. Campbell, Charles Quincy, Jordan Osserman, and
Ove K. Pedersen. 2013. Coding In-depth Semistructured In-
terviews: Problems of Unitization and Intercoder Reliabil-
ity and Agreement. Sociological Methods & Research 42, 3
(2013), 294-320. https://doi.org/10.1177/0049124113500475
arXiv:https://doi.org/10.1177/0049124113500475

[5] Vijaya Kumar Eluri, Thomas A. Mazzuchi, and Shahram
Sarkani. 2021. Predicting long-time contributors for GitHub
projects using machine learning. Information and Software
Technology 138 (2021), 106616. https://doi.org/10.1016/j.infsof.
2021.106616

[6] GitHub. Accessed 2023. About issue and pull request templates.
https://docs.github.com/en/communities/using-templates-
to-encourage-useful-issues-and-pull-requests/about-issue-
and-pull-request-templates.

[7] GitHub. Accessed 2023. Configuring issue templates for your
repository. https://docs.github.com/en/communities/using-
templates-to-encourage-useful-issues-and-pull-
requests/configuring-issue-templates-for-your-repository.

[8] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad,

Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke

Zettlemoyer. 2019. BART: Denoising Sequence-to-Sequence

Pre-training for Natural Language Generation, Translation,

and Comprehension. arXiv:1910.13461 [cs.CL]

Zhixing Li, Yue Yu, Tao Wang, Yan Lei, Ying Wang, and

Huaimin Wang. 2023. To Follow or Not to Follow: Un-

derstanding Issue/Pull-Request Templates on GitHub. IEEE

Transactions on Software Engineering 49, 4 (2023), 2530-2544.

https://doi.org/10.1109/TSE.2022.3224053

Audris Mockus, Roy T. Fielding, and James Herbsleb. 2000.

A Case Study of Open Source Software Development: The

Apache Server. In Proceedings of the 22nd International Con-

ference on Software Engineering (Limerick, Ireland) (ICSE ’00).

Association for Computing Machinery, New York, NY, USA,

263-272. https://doi.org/10.1145/337180.337209

Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan

Nagappan. 2017. Curating GitHub for Engineered Software

Projects. Empirical Softw. Engg. 22, 6 (dec 2017), 3219-3253.

https://doi.org/10.1007/s10664-017-9512-6

[12] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka,

Kouichi Kishida, and Yunwen Ye. 2002. Evolution patterns of

—
=}
—

—
—_
S

—

[11

—

open-source software systems and communities. In Interna-

tional Workshop on Principles of Software Evolution.

Devarshi Singh, Varun Ramachandra Sekar, Kathryn T. Stolee,

and Brittany Johnson. 2017. Evaluating how static analysis

tools can reduce code review effort. 2017 IEEE Symposium on

Visual Languages and Human-Centric Computing (VL/HCC)

(2017), 101-105.

[14] Xin Tan and Minghui Zhou. 2019. How to Communicate When
Submitting Patches: An Empirical Study of the Linux Kernel.
Proc. ACM Hum.-Comput. Interact. 3, CSCW, Article 108 (nov
2019), 26 pages. https://doi.org/10.1145/3359210

—
[
w

—

https://doi.org/10.1109/TSE.2019.2918536
https://doi.org/10.1109/TSE.2019.2918536
https://doi.org/10.1109/ICSME.2016.31
https://doi.org/10.1145/1718918.1718973
https://doi.org/10.1177/0049124113500475
https://arxiv.org/abs/https://doi.org/10.1177/0049124113500475
https://doi.org/10.1016/j.infsof.2021.106616
https://doi.org/10.1016/j.infsof.2021.106616
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/about-issue-and-pull-request-templates
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/about-issue-and-pull-request-templates
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/about-issue-and-pull-request-templates
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/configuring-issue-templates-for-your-repository
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/configuring-issue-templates-for-your-repository
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/configuring-issue-templates-for-your-repository
https://arxiv.org/abs/1910.13461
https://doi.org/10.1109/TSE.2022.3224053
https://doi.org/10.1145/337180.337209
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1145/3359210

[15]

(16]

(17]

(18]

(19]

Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Let’s
Talk about It: Evaluating Contributions through Discussion
in GitHub. In Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering
(Hong Kong, China) (FSE 2014). Association for Computing
Machinery, New York, NY, USA, 144-154. https://doi.org/10.
1145/2635868.2635882

Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar De-
vanbu, and Vladimir Filkov. 2015. Quality and productivity
outcomes relating to continuous integration in GitHub. 805-
816. https://doi.org/10.1145/2786805.2786850

Wenpeng Yin, Jamaal Hay, and Dan Roth. 2019. Benchmark-
ing Zero-shot Text Classification: Datasets, Evaluation and
Entailment Approach. arXiv:1909.00161 [cs.CL]

Mengxi Zhang, Huaxiao Liu, Chunyang Chen, Yuzhou Liu,
and Shuotong Bai. 2022. Consistent or not? An investi-
gation of using Pull Request Template in GitHub. Infor-
mation and Software Technology 144 (April 2022). https:
//doi.org/10.1016/j.infso0f.2021.106797 Funding Information:
The work is funded by Natural Science Research Foundation of
Jilin Province of China under Grant Nos. 20190201193JC , sup-
ported by Graduate Innovation Fund of Jilin University, China
101832020CX181 , supported by “the Fundamental Research
Funds for the Central Universities”, China , and Interdisci-
plinary Research Funding Program for Doctoral Students of
Jilin University, China 101832020D]JX064 . Publisher Copyright:
© 2021 Elsevier B.V..

Thomas Zimmermann, R. Premraj, Nicolas Bettenburg, Sascha
Just, Adrian Schroter, and Cathrin Weiss. 2010. What Makes a
Good Bug Report? IEEE Transactions on Software Engineering
36 (09 2010), 618—643. https://doi.org/10.1109/TSE.2010.63

https://doi.org/10.1145/2635868.2635882
https://doi.org/10.1145/2635868.2635882
https://doi.org/10.1145/2786805.2786850
https://arxiv.org/abs/1909.00161
https://doi.org/10.1016/j.infsof.2021.106797
https://doi.org/10.1016/j.infsof.2021.106797
https://doi.org/10.1109/TSE.2010.63

	Abstract
	1 Introduction
	2 Motivation
	3 Background
	4 Methodology
	4.1 Research Questions
	4.2 Data Collection
	4.3 Data Analysis

	5 Findings
	6 Discussion
	6.1 Limitations

	7 Threats of Validity
	8 Related Work
	9 Conclusions
	10 Future Work

